Lung Cancer Detection Using Image Processing Techniques

This book provides the most recent findings and knowledge in advanced diagnostics technology, covering a wide spectrum including brain activity analysis, breast and lung cancer detection, echocardiography, computer aided skeletal assessment to mitochondrial biology imaging at the cellular level. The authors explored magneto acoustic approaches and tissue elasticity imaging for the purpose of breast cancer detection. Perspectives in fetal echocardiography from an image processing angle are included. Diagnostic imaging in the field of mitochondrial diseases as well as the use of Computer-Aided System (CAD) are also discussed in the book. This book will be useful for students, lecturers or professional researchers in the field of biomedical sciences and image processing.

Lung cancer is one of the most common cancers in both men and women worldwide. Early diagnosis of lung cancer can significantly increase the chances of a patient's survival, yet early detection has historically been difficult. As a result, there has been a great deal of progress in the development of accurate and fast diagnostic tools in recent years. Lung Cancer and Imaging provides an introduction to both the methods currently used in lung cancer diagnosis and the promising new techniques that are emerging. Areas covered include the major trends and challenges in lung cancer detection and diagnosis, classification of cancer types, lung feature extraction in joint PET/CT images, and algorithms in the area of low dosage CT lung cancer images. Part of Series in Physics and Engineering in Medicine and Biology. This book presents emerging concepts in data mining, big data analysis, communication, and networking technologies, and discusses the state-of-the-art in data engineering practices to tackle massive data distributions in smart networked environments. It also provides insights into potential data distribution challenges in ubiquitous data-driven networks, highlighting research on the theoretical and systematic framework for analyzing, testing and designing intelligent data analysis models for evolving communication frameworks. Further, the book showcases the latest developments in wireless sensor networks, cloud computing, mobile network, autonomous systems, cryptography, automation, and other communication and networking technologies. In addition, it addresses data security, privacy and trust, wireless networks, data classification, data prediction, performance analysis, data validation and verification models, machine learning, sentiment analysis, and various data analysis techniques.

Knowledge Modelling and Big Data Analytics in Healthcare: Advances and Applications focuses on automated analytical techniques for healthcare applications used to extract knowledge from a vast amount of data. It brings together a variety of different aspects of the healthcare system and aids in the decision-making processes for healthcare professionals. The editors connect four contemporary areas of research rarely brought together in one book: artificial intelligence, big data analytics, knowledge modelling, and healthcare. They present state-of-the-art research from the healthcare sector, including research on medical imaging, healthcare analysis, and the applications of artificial intelligence in drug discovery. This book is intended for data scientists, academicians, and industry professionals in the healthcare sector. The book will focus on the applications of machine learning for sustainable development. Machine learning (ML) is an emerging technique whose diffusion and adoption in various sectors (such as energy, agriculture, internet of things, infrastructure) will be of enormous benefit. The state of the art of machine learning models is most useful for forecasting and prediction of various sectors for sustainable development. This issue gives the general radiologist a solid overview of lung cancer imaging techniques. CT screening for lung cancer is discussed, and the evaluation and management of indeterminate pulmonary nodules is reviewed. Revised TNM lung cancer staging, as well as the optimal imaging protocols for lung cancer staging (CT, MR and PET) are thoroughly examined. A multidisciplinary approach to tissue sampling and updated histopathologic classification of lung cancer are discussed. Image-guided ablative therapies for lung cancer are reviewed. Finally, future trends in lung cancer diagnosis and staging and genetics are reviewed, as well as novel biomarkers for lung cancer detection. Developing an effective computer-aided diagnosis (CAD) system for lung cancer is of great clinical importance and can significantly increase the patient's chance for survival. For this reason, CAD systems for lung cancer have been investigated in a large number of research studies. A typical CAD system for lung cancer diagnosis is composed of four main processing steps: segmentation of the lung fields, detection of nodules inside the lung fields, segmentation of the detected nodules, and diagnosis of the nodules as benign or malignant. This book overviews the current state-of-the-art techniques that have been developed to implement each of these CAD processing steps. Overviews the latest state-of-the-art diagnostic CAD systems for lung cancer imaging and diagnosis Offers detailed coverage of 3D and 4D image segmentation Illustrates unique fully automated detection systems coupled with 4D Computed Tomography (CT) Written by authors who are world-class researchers in the biomedical imaging sciences Includes extensive references at the end of each chapter to enhance further study Ayman El-Baz is a professor, university scholar, and chair of the Bioengineering Department at the University of Louisville, Louisville, Kentucky. He earned his bachelor's and master's degrees in electrical engineering in 1997 and 2001, respectively. He earned his doctoral degree in electrical engineering from the University of Louisville in 2006. In 2009, he was named a Coulter Fellow for his contributions to the field of biomedical translational research. He has 17 years of hands-on experience in the fields of bio-imaging modeling and noninvasive computer-assisted diagnosis systems. He has authored or coauthored more than 500 technical articles (132 journals, 23 books, 57 book chapters, 211 refereed-conference papers, 137 abstracts, and 27 U.S. patents and disclosures). Jasjit S. Suri is an innovator, scientist, a visionary, an industrialist, and an internationally known world leader in biomedical engineering. He has spent over 25 years in the field of biomedical engineering/devices and its management. He received his doctorate from the University of Washington, Seattle, and his business management sciences degree from Weatherhead School of Management, Case Western Reserve University, Cleveland, Ohio. He was awarded the President's Gold Medal in 1980 and named a Fellow of the American Institute of Medical and Biological Engineering for
his outstanding contributions in 2004. In 2018, he was awarded the Marquis Life Time Achievement Award for his outstanding contributions and dedication to medical imaging and its management. This book provides a comprehensive, conceptual, and detailed overview of the wide range of applications of Artificial Intelligence, Machine Learning, and Data Science and how these technologies have an impact on various domains such as healthcare, business, industry, security, and how all countries around the world are feeling this impact. The book aims at low-cost solutions which could be implemented even in developing countries. It highlights the significant impact these technologies have on various industries and on us as humans. It provides a virtual picture of forthcoming better human life shadowed by the new technologies and their applications and discusses the impact Data Science has on business applications. The book will also include an overview of the different AI applications and their correlation between each other. The audience is graduate and postgraduate students, researchers, academicians, institutions, and professionals who are interested in exploring key technologies like Artificial Intelligence, Machine Learning, and Data Science. On Improving Early Lung Cancer Detection and Localization by Automated Image Cytometry and Autofluorescence Bronchoscopy: A Case Finding Study in Lung Cancer Detection and Classification Using SVM
Advances in Computerized Analysis in Clinical and Medical Imaging book is devoted for spreading of knowledge through the publication of scholarly research, primarily in the fields of clinical & medical imaging. The types of chapters consented include those that cover the development and implementation of algorithms and strategies based on the use of geometrical, statistical, physical, functional to solve the following types of problems, using medical image datasets: visualization, feature extraction, segmentation, image-guided surgery, representation of pictorial data, statistical shape analysis, computational physiology and telemedicine with medical images. This book highlights annotations for all the medical and clinical imaging researchers’ a fundamental advances of clinical and medical image analysis techniques. This book will be a good source for all the medical imaging and clinical research professionals, outstanding scientists, and educators from all around the world for network of knowledge sharing. This book will comprise high quality disseminations of new ideas, technology focus, research results and discussions on the evolution of Clinical and Medical image analysis techniques for the benefit of both scientific and industrial developments. Features: Research aspects in clinical and medical image processing Human Computer Interaction and interface in imaging diagnostics Intelligent Imaging Systems for effective analysis using machine learning algorithms Clinical and Scientific Evaluation of Imaging Studies Computer-aided disease detection and diagnosis Clinical evaluations of new technologies Mobility and assistive devices for challenged and elderly people This book serves as a reference book for researchers and doctoral students in the clinical and medical imaging domain including radiologists. Industries that manufacture imaging modality systems and develop optical systems would be especially interested in the challenges and solutions provided in the book. Professionals and practitioners in the medical and clinical imaging may be benefited directly from authors’ experiences. The Kuala Lumpur International Conference on Biomedical Engineering (BioMed 2006) was held in December 2006 at the Palace of the Golden Horses, Kuala Lumpur, Malaysia. The papers presented at BioMed 2006, and published here, cover such topics as Artificial Intelligence, Biological effects of non-ionising electromagnetic fields, Biomaterials, Biomechanics, Biomedical Sensors, Biomedical Signal Analysis, Biotechnology, Clinical Engineering, Human performance engineering, Imaging, Medical Informatics, Medical Instruments and Devices, and many more. The book intends to cover various problematic aspects of emerging smart computing and self-adapting technologies comprising of machine learning, artificial intelligence, deep learning, robotics, cloud computing, fog computing, data mining algorithms, including emerging intelligent and smart applications related to these research areas. Further coverage includes implementation of self-adaptation architecture for smart devices, self-adaptive models for smart cities and self-driven cars, decentralized self-adaptive computing at the edge networks, energy-aware AI-based systems, M2M networks, sensors, data analytics, algorithms and tools for engineering self-adaptive systems, and so forth. Acts as guide to Self-healing and Self-adaptation based fully automatic future technologies Discusses about Smart Computational abilities and self-adaptive systems illustrates tools and techniques for data management and explains the need to apply, and data integration for improving efficiency of biological data. The result shows that the future of self-learning and self-adaptive systems of systems covers fields such as automation, robotics, medical sciences, biomedical and agricultural sciences, healthcare and so forth. This book is aimed researchers and graduate students in machine learning, information technology, and artificial intelligence. This book discuss how deep learning can help healthcare images or text data in making useful decisions’. For that, the need of reliable deep learning models like Neural networks, Convolutional neural network, Backpropagation, Recurrent neural network is increasing in medical image processing, i.e., in Colorization of Black and white images of X-Ray, automatic machine translation, object classification in photographs / images (CT-SCAN), character or useful generation (ECG), image caption generation, etc. Hence, Reliable Deep Learning methods for perception or producing better results are highly effective for e-healthcare applications, which is the challenge of today. For that, this book provides some reliable deep learning or deep neural networks models for healthcare applications via receiving chapters from around the world. In summary, this book will cover introduction, requirement, importance, issues and challenges, etc., faced in available current deep learning models (also include innovative deep learning algorithms/ models for curing disease in Medicare) and provide opportunities for several research communities with including several research gaps in deep learning models (for healthcare applications). This book introduces a variety of advanced machine learning approaches covering the areas of neural networks, fuzzy logic, and hybrid intelligent systems for the determination and diagnosis of cancer. Moreover, the tactical solutions of machine learning have proved its vast range of significance and, provided novel solutions in the medical field for the diagnosis of disease. This book also explores the distinct deep learning approaches that are capable of yielding more accurate outcomes for the diagnosis care of cancer. In addition to providing an overview of the emerging machine and deep learning approaches, it also enlightens an insight on how to evaluate the efficiency and appropriateness of such techniques and analysis of cancer data used in the cancer diagnosis. Therefore, this book focuses on the recent advancements in the machine learning and deep learning approaches used in the diagnosis of different types of cancer along with their research challenges and future directions for the targeted audience including scientists, experts, Ph.D. students, postdocs, and anyone interested in the subjects discussed. Each day, new applications and methods are developed for utilizing technology in the field of medical sciences, both as diagnostic tools and as methods for patients to access their medical information through their personal gadgets. However, the maximum potential for the application of new technologies within the medical field has not yet been realized. Mobile Devices and Smart Gadgets in Medical Sciences is a pivotal reference source that explores different mobile applications, tools, software, and smart gadgets and their applications within the field of healthcare. Covering a wide range of topics such as artificial intelligence, telemedicine, and oncology, this book is ideally designed for medical practitioners, mobile application developers, technology developers, software experts, computer engineers, programmers, ICT innovators, policymakers, researchers, academicians, and students. This comprehensive reference text discusses concepts of intelligence communication and automation system in a single volume. The text discusses the role of artificial intelligence in communication engineering, the role of machine learning in communication systems, and
applications of image and video processing in communication. It covers important topics including smart sensing systems, intelligent
hardware design, low power system design using AI techniques, intelligent signal processing for biomedical applications, intelligent robotic
systems, and network security applications. The text will be useful for senior undergraduate and graduate students in different areas including
electrical engineering, and electronics and communications engineering.

This book includes high-quality, peer-reviewed papers from the International Conference on Recent Advancement in Computer,
Communication and Computational Sciences (RACCCS-2018), held at Aryabhatta College of Engineering & Research Center,
Ajmer, India on August 10–11, 2018, presenting the latest developments and technical solutions in computational sciences.

Networking and communication are the backbone of data science, data- and knowledge engineering, which have a wide scope for
implementation in engineering sciences. This book offers insights that reflect the advances in these fields from upcoming
researchers and leading academicians across the globe. Covering a variety of topics, such as intelligent hardware and software
design, advanced communications, intelligent computing technologies, advanced software engineering, the web and informatics,
and intelligent image processing, it helps those in the computer industry and academia use the advances in next-generation
communication and computational technology to shape real-world applications.

Digital images have several benefits, such as faster and inexpensive processing cost, easy storage and communication,
immediate quality assessment, multiple copying while preserving quality, swift and economical reproduction, and adaptable
manipulation. Digital medical images play a vital role in everyday life. Medical imaging is the process of producing visible images
of inner structures of the body for scientific and medical study and treatment as well as a view of the function of interior tissues.
This process pursues disorder identification and management. Medical imaging in 2D and 3D includes many techniques and
operations such as image gaining, storage, presentation, and communication. The 2D and 3D images can be processed in
multiple dimensions. Depending on the requirement of a specific problem, one must identify various features of 2D or 3D images
while applying suitable algorithms. These image processing techniques began in the 1960s and were used in such fields as space,
clinical purposes, the arts, and television image improvement. In the 1970s, with the development of computer systems, the cost of
image processing was reduced and processes became faster. In the 2000s, image processing became quicker, inexpensive, and
simpler. In the 2020s, image processing has become a more accurate, more efficient, and self-learning technology. This book
highlights the framework of the robust and novel methods for medical image processing techniques in 2D and 3D. The chapters
explore existing and emerging image challenges and opportunities in the medical field using various medical image processing
techniques. The book discusses real-time applications for artificial intelligence and machine learning in medical image processing.

The authors also discuss implementation strategies and future research directions for the design and application requirements of
these systems. This book will benefit researchers in the medical image processing field as well as those looking to promote the
mutual understanding of researchers within different disciplines that incorporate AI and machine learning. FEATURES
Highlights the framework of the robust and novel methods for medical image processing techniques Discusses implementation strategies and
future research directions for the design and application requirements of medical imaging Examines real-time application needs
Exploring existing and emerging image challenges and opportunities in the medical field

With increasing emphasis being placed on screening and early prevention in cancer, this textbook examines the various methods
and interventions used in screening in lung cancer, and presents a detailed review of the approaches to prevention and treatment
of early disease. It will be of particular interest to lung cancer and respiratory medicine spe

Smart Healthcare for Disease Diagnosis and Prevention focuses on the advancement in healthcare technology to improve human
health at all levels using smart technologies. It covers all necessary topics from basic concepts (such as signal and image
processing) to advanced knowledge on topics such as tissue engineering, virtual and intelligent instrumentation (or VLSI) and
Embedded Systems. This book can be used to guide students and young researchers, providing basic knowledge on signal/image
processing and smart technologies. Users will find a perfect blend of the interdisciplinary approach to biomedical engineering. The
book considers many technical concepts, emerging technologies, real-world healthcare applications, and many other technical,
multidisciplinary notions in the same content. Finally, it systematically introduces the technologies and devices for healthcare objects
and targets disease diagnosis and prevention in different views. Discusses how new advanced technologies are used in real
healthcare applications to improve patient safety Explores how medical data such as signals and images can be used in diagnosis
Covers how wireless communications devices, such as sensor networks, RFID, wireless body area network, and wearable
sensors are used in the medical environment

This book is a collection of all the experimental results and analysis carried out on various medical imaging modalities. The
experimental investigations have been carried out on medical images using State-of-art Computational Image processing
techniques and also tabulated the statistical values wherever necessary. This book is intended to explain how the Computer Vision
Techniques are used to improve the quality of Medical images for easy analysis in a very simple way. It contains Research which
is useful to Research Scholars, Engineers, Medical Doctors and Bioinformatics researchers.

This book includes high-quality papers presented at the Symposium 2019, organised by Sikkim Manipal Institute of Technology
(SMIT), in Sikkim from 26–27 February 2019. It discusses common research problems and challenges in medical image analysis,
such as deep learning methods. It also discusses how these theories can be applied to a broad range of application areas,
including lung and chest x-ray, breast CAD, microscopy and pathology. The studies included mainly focus on the detection of
events from biomedical signals.

This book constitutes the thoroughly refereed proceedings of the second International Symposium on Intelligent Systems
Technologies and Applications (ISTA’16), held on September 21–24, 2016 in Jaipur, India. The 80 revised papers presented were
carefully reviewed and selected from 210 initial submissions and are organized in topical sections on image processing and
artificial vision, computer networks and distributed systems, intelligent tools and techniques and applications using intelligent
techniques.

Lung cancer seems to be a common cause of death among people throughout the world. Lung cancer is the leading cancer killer
in both men and women in the U.S. In 1987, it surpassed breast cancer to become the leading cause of cancer deaths in women.
An estimated 158,080 Americans died from lung cancer in 2016, accounting for approximately 27 percent of all cancer deaths.
Early detection of lung cancer can increase the chance of survival among people. The overall 5-year survival rate for lung cancer
patients increases from 14 to 49% if the disease is detected in time. Computed Tomography (CT) scans of lungs can be more
efficient than X-ray or MRI scans in detecting the presence of cancer. The scanned images of lungs are obtained from LIDC (Lung
confirmed both cancer and no-cancer diagnosis with sensitivity and specificity of 79% and 87%. Moreover, our aim is to identify possible
cancer cases. This study includes the analysis of 116 smokers. The sputum samples were collected and analyzed to determine the presence of neoplastic lesions.

The sputum analysis involved the use of Image Cytometry to identify abnormalities in the sputum samples. The 5cER value was used to assess the capability of Image Cytometry to identify neoplastic lesions that occur in smokers using 5cER as a diagnostic parameter that could assist clinicians in lung cancer's early detection, using a noninvasive way. In our study, the sputum of 116 smokers was collected. The 5cER value assessed the capability of Image Cytometry to identify neoplastic lesions that occur in smokers using 5cER as a diagnostic parameter that could assist clinicians in lung cancer's early detection, using a noninvasive way.

Chronic obstructive pulmonary disease (COPD) refers to chronic bronchitis and emphysema, a pair of two commonly co-
existing diseases of the lungs. The leading cause of both lung cancer and COPD is well recognized in tobacco use. The aim of our study is to assess the capability of Image Cytometry to identify neoplastic lesions that occur in smokers using 5cER as a diagnostic parameter that could help clinicians in lung cancer's early detection, using a noninvasive way. In our study, the sputum of 116 smokers was collected. The 5cER value confirmed both cancer and no-cancer diagnosis with sensitivity and specificity of 79% and 87%. Moreover, our aim is to identify possible
cancer cases. This study includes the analysis of 116 smokers. The sputum samples were collected and analyzed to determine the presence of neoplastic lesions.

The sputum analysis involved the use of Image Cytometry to identify abnormalities in the sputum samples. The 5cER value was used to assess the capability of Image Cytometry to identify neoplastic lesions that occur in smokers using 5cER as a diagnostic parameter that could assist clinicians in lung cancer's early detection, using a noninvasive way. In our study, the sputum of 116 smokers was collected. The 5cER value assessed the capability of Image Cytometry to identify neoplastic lesions that occur in smokers using 5cER as a diagnostic parameter that could assist clinicians in lung cancer's early detection, using a noninvasive way.

Chronic obstructive pulmonary disease (COPD) refers to chronic bronchitis and emphysema, a pair of two commonly co-
existing diseases of the lungs. The leading cause of both lung cancer and COPD is well recognized in tobacco use. The aim of our study is to assess the capability of Image Cytometry to identify neoplastic lesions that occur in smokers using 5cER as a diagnostic parameter that could help clinicians in lung cancer's early detection, using a noninvasive way. In our study, the sputum of 116 smokers was collected. The 5cER value confirmed both cancer and no-cancer diagnosis with sensitivity and specificity of 79% and 87%. Moreover, our aim is to identify possible
cancer cases. This study includes the analysis of 116 smokers. The sputum samples were collected and analyzed to determine the presence of neoplastic lesions.

The sputum analysis involved the use of Image Cytometry to identify abnormalities in the sputum samples. The 5cER value was used to assess the capability of Image Cytometry to identify neoplastic lesions that occur in smokers using 5cER as a diagnostic parameter that could assist clinicians in lung cancer's early detection, using a noninvasive way. In our study, the sputum of 116 smokers was collected. The 5cER value assessed the capability of Image Cytometry to identify neoplastic lesions that occur in smokers using 5cER as a diagnostic parameter that could assist clinicians in lung cancer's early detection, using a noninvasive way. In our study, the sputum of 116 smokers was collected. The 5cER value confirmed both cancer and no-cancer diagnosis with sensitivity and specificity of 79% and 87%. Moreover, our aim is to identify possible
cancer cases. This study includes the analysis of 116 smokers. The sputum samples were collected and analyzed to determine the presence of neoplastic lesions.

The sputum analysis involved the use of Image Cytometry to identify abnormalities in the sputum samples. The 5cER value was used to assess the capability of Image Cytometry to identify neoplastic lesions that occur in smokers using 5cER as a diagnostic parameter that could assist clinicians in lung cancer's early detection, using a noninvasive way. In our study, the sputum of 116 smokers was collected. The 5cER value assessed the capability of Image Cytometry to identify neoplastic lesions that occur in smokers using 5cER as a diagnostic parameter that could assist clinicians in lung cancer's early detection, using a noninvasive way. In our study, the sputum of 116 smokers was collected. The 5cER value confirmed both cancer and no-cancer diagnosis with sensitivity and specificity of 79% and 87%. Moreover, our aim is to identify possible
cancer cases. This study includes the analysis of 116 smokers. The sputum samples were collected and analyzed to determine the presence of neoplastic lesions.

The sputum analysis involved the use of Image Cytometry to identify abnormalities in the sputum samples. The 5cER value was used to assess the capability of Image Cytometry to identify neoplastic lesions that occur in smokers using 5cER as a diagnostic parameter that could assist clinicians in lung cancer's early detection, using a noninvasive way. In our study, the sputum of 116 smokers was collected. The 5cER value assessed the capability of Image Cytometry to identify neoplastic lesions that occur in smokers using 5cER as a diagnostic parameter that could assist clinicians in lung cancer's early detection, using a noninvasive way. In our study, the sputum of 116 smokers was collected. The 5cER value confirmed both cancer and no-cancer diagnosis with sensitivity and specificity of 79% and 87%. Moreover, our aim is to identify possible
cancer cases. This study includes the analysis of 116 smokers. The sputum samples were collected and analyzed to determine the presence of neoplastic lesions.

The sputum analysis involved the use of Image Cytometry to identify abnormalities in the sputum samples. The 5cER value was used to assess the capability of Image Cytometry to identify neoplastic lesions that occur in smokers using 5cER as a diagnostic parameter that could assist clinicians in lung cancer's early detection, using a noninvasive way. In our study, the sputum of 116 smokers was collected. The 5cER value assessed the capability of Image Cytometry to identify neoplastic lesions that occur in smokers using 5cER as a diagnostic parameter that could assist clinicians in lung cancer's early detection, using a noninvasive way. In our study, the sputum of 116 smokers was collected. The 5cER value confirmed both cancer and no-cancer diagnosis with sensitivity and specificity of 79% and 87%. Moreover, our aim is to identify possible
cancer cases. This study includes the analysis of 116 smokers. The sputum samples were collected and analyzed to determine the presence of neoplastic lesions.
markers and to understand if there is a correlation with ploidy status. Preliminary data show that same genes have positive correlation ($r > 0.5$) and same negative correlation (r).

The main purpose of this project is to investigate the feasibility and efficacy of using a stereo display workstation for lung cancer screening on CT images. The tasks included in this project are development and evaluation of stereo image projection and display for chest CT images, observer performance evaluation for the stereo display, and stereo feature analysis and comparison to the conventionally used display methods for lung cancer detection. In the previous report periods, we have built a stereo display workstation for chest CT images, then conducted and analyzed a pilot observer performance study. In this annual report period, we have conducted a main observer performance study as scheduled in the proposal, and investigated spectrophotometric characteristics for further understanding and improving stereo display. The tasks we did in this period are: 1. Conducting a main study: the main study was organized as a retrospective study of 100 lung cancer screening cases containing about 560 nodules. The cases were interpreted in each of the 3 display modes by 8 radiologists who have extensive experience in reading chest CT. Collection of the interpretation data has been completed for analysis. About 1159 suspicious lesions, including true and false positives have been found in the readings and will be used for evaluation of the 3 tested display modes. 2. Investigating spectrophotometric characteristics of stereographic image pairs: to further understand the characteristics of stereo imaging and displaying, we analyzed differences in spectrophotometric characteristics between images acquired during stereographic imaging. We found that though uniform global differences can easily be corrected by applying traditional histogram matching techniques, these methods are not capable of dealing with differences that are object or distance dependent.

The main purpose of this project is to investigate the feasibility and efficacy of using a stereo display workstation for lung cancer screening on CT images. The tasks included in this project are development and evaluation of stereo image projection and display for chest CT images, observer performance evaluation for the stereo display, and stereo feature analysis and comparison to the conventionally used display methods for lung cancer detection. During this progress period, we have made progress in following tasks: 1) Building stereo display workstation for chest CT images: we have investigated effects of several commonly used compositing methods on nodule representation and detection in stereo CT images. Among these methods, conventional maximum intensity projection (MIP) produced the highest image contrast, but gave ambiguities in local geometric detail and texture, whereas averaging compositing resulted in the lowest contrast, but preserved geometric details. Distance-weighted MIP partially recovered geometric information, which was lost in images composited by conventional MIP. 2) Preparing cases for observer performance study: to get consensus truth of the cases collected for this project, three radiologists have read the cases and recorded their subjective ratings on conventional workstation. Inter- and intra-reader variations have been calculated, and will be compared with the readings from stereo display. 3) Conducting pilot observer performance study: six radiologists have participated a pilot observer performance study. The study has three display modes, conventional slice-by-slice mode, conventional MIP display mode and stereo display mode. The performance of lung nodule detection and characterization are examined and compared for the three modes.

Nano-bioimaging is a real-time observation method for the study of biological processes in subcellular structures and entire cells. This technique aims to interfere as little as possible with life processes using nanoscale materials and probes. In this method, nanoscale photon source is often used for imaging, and 3D structure of the observed specimen is studied in detail without physical interference. Over the last decade, further boost in bioimaging has led to increase the nano-bioimaging impact that includes many improvements in the data analysis method, image processing, and molecular imaging technology. However, to increase the usage of nano-bioimaging, several developments in the field of diagnosis accuracy, photobleaching prevention, and controlling of the fluorescence resonance energy transfer (FRET) must be achieved. The purpose of this book is to provide a perspective on the current status of nano-bioimaging technologies. This book gathers the proceedings of the 8th International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA 2020), held at NIT Surathkal, Karnataka, India, on 4–5 January 2020. In these proceedings, researchers, scientists, engineers and practitioners share new ideas and lessons learned in the field of intelligent computing theories with prospective applications in various engineering disciplines. The respective papers cover broad areas of the information and decision sciences, and explore both the theoretical and practical aspects of data-intensive computing, data mining, evolutionary computation, knowledge management and networks, sensor networks, signal processing, wireless networks, protocols and architectures. Given its scope, the book offers a valuable resource for graduate students in various engineering disciplines.

The book gathers high-quality research papers presented at the International Conference on Advanced Computing and Intelligent Engineering (ICACIE 2017). It includes technical sections describing progress in the fields of advanced computing and intelligent engineering, and is primarily intended for postgraduate students and researchers working in Computer Science and Engineering. However, researchers working in Electronics will also find the book useful, as it addresses hardware technologies and next-gen communication technologies.

Copyright: 88e20e565ec47f1884b48e651c56f33d